If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-4x-3135=0
a = 3; b = -4; c = -3135;
Δ = b2-4ac
Δ = -42-4·3·(-3135)
Δ = 37636
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{37636}=194$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-194}{2*3}=\frac{-190}{6} =-31+2/3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+194}{2*3}=\frac{198}{6} =33 $
| 9(4-2)/2x=15 | | 5x-11=-70 | | 21y=3=9 | | B(x/7x-1=13 | | P(x)=x⁵+4x⁴-4x³-34x²-45x+8 | | 5s-42=83 | | 3x-2+5x+1=4(x-5) | | 4a+2-(3a+5)=0 | | 7x-3=9+9x | | 3x-9=18-2x | | 5-(x/12)=10 | | 3x+9=18-2x | | 3-(x/4)=9 | | -4(5-b)=1/3(b+16) | | g-14g-15=0 | | -4(5-b)=1/3(b+16 | | 14e=10+6e | | 5(x/4+5/4)=100 | | -570=-680-x | | -570=-660-x | | 5x=1÷3125 | | 2x+30=15 | | 0.46x=19 | | 3x-7=7x-4 | | 5|2x-1|=15 | | 3(x+3)=5(x-7) | | 3x-1=7x-6 | | -r=19r-20 | | -12u+2=-11u+19 | | -17-6h=17-8h | | -n+10=9n-10 | | 2(3n+5)+3n=5(n-4) |